Show simple item record

dc.contributor.authorSummerfield, Alex
dc.contributor.otherCheng, Tin s.
dc.contributor.otherKozikov, Aleksey
dc.contributor.otherDavies, Andrew
dc.contributor.otherCho, Yong-Jin
dc.contributor.otherKhlobystov, Andrei N.
dc.contributor.otherMellor, Christopher J.
dc.contributor.otherFoxon, C. Thomas
dc.contributor.otherWatanabe, Kenji
dc.contributor.otherTaniguchi, Takashi
dc.contributor.otherEaves, Laurence
dc.contributor.otherNovoselov, Kostya S.
dc.contributor.otherNovikov, Sergei V.
dc.contributor.otherBeton, Peter
dc.date.accessioned2018-07-16T09:44:02Z
dc.date.available2018-07-16T09:44:02Z
dc.date.issued2018-07-16
dc.identifier.urihttps://rdmc.nottingham.ac.uk/handle/internal/362
dc.description.abstractMonolayer hexagonal boron nitride (hBN) tunnel barriers investigated using conductive atomic force microscopy reveal moiré patterns in the spatial maps of their tunnel conductance consistent with the formation of a moiré superlattice between the hBN and an underlying highly ordered pyrolytic graphite (HOPG) substrate. This variation is attributed to a periodic modulation of the local density of states and occurs for both exfoliated hBN barriers and epitaxially-grown layers. The epitaxial barriers also exhibit enhanced conductance at localised sub-nanometre regions which are attributed to exposure of the substrate to a nitrogen plasma source during the high temperature growth process. Our results show clearly a spatial periodicity of tunnel current due to the formation of a moiré superlattice and we argue that this can provide a mechanism for elastic scattering of charge carriers for similar interfaces embedded in graphene/hBN resonant tunnel diodes.en_UK
dc.language.isoenen_UK
dc.publisherThe University of Nottinghamen_UK
dc.subject.lcshAtomic force microscopyen_UK
dc.subject.lcshSuperlattices as materialsen_UK
dc.subject.lcshBoron nitrideen_UK
dc.subject.lcshGraphite compositesen_UK
dc.subject.lcshMolecular beam epitaxyen_UK
dc.titleMoiré-modulated conductance of hexagonal boron nitride tunnel barriersen_UK
dc.identifier.doihttp://doi.org/10.17639/nott.358
dc.subject.freeAtomic force microscopy moire tunnel conductance hexagonal boron nitride molecular beam epitaxyen_UK
dc.subject.jacsPhysical sciences::Materials scienceen_UK
dc.subject.lcQ Science::QC Physics::QC170 Atomic physics. Constitution and properties of matteren_UK
dc.date.collection2016-2018en_UK
uon.divisionUniversity of Nottingham, UK Campus::Faculty of Science::School of Physics and Astronomyen_UK
uon.funder.controlledEngineering & Physical Sciences Research Councilen_UK
uon.datatypeImaging dataen_UK
uon.funder.freeLeverhulme Trusten_UK
uon.funder.freeEU Graphene Flagshipen_UK
uon.funder.freeEuropean Research Councilen_UK
uon.funder.freeThe Royal Societyen_UK
uon.funder.freeUS Army Research Officeen_UK
uon.funder.freeMEXT Japanen_UK
uon.funder.freeCRESTen_UK
uon.grantEP/L013908/1en_UK
uon.grantEP/P019080/1en_UK
uon.grantEP/M50810X/1en_UK
uon.grantRPG-2014-129en_UK
uon.grantW911NF-16-1-0279en_UK
uon.grantJPMJCR15F3en_UK
uon.collectionmethodInstruments: Asylum Research Cypher-S AFM/STMen_UK
uon.preservation.rarelyaccessedtrue
dc.relation.doi10.1021/acs.nanolett.8b01223en_UK


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record